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Traditional composite analysis in cyclone studies, which compares variables at fixed grid points 
relative to the cyclone center, is limited by spatial misalignments caused by cyclone rotation. This 
misalignment blurs composite results and hinders accurate structural analysis. To address this issue, 
we propose the Cyclone Alignment Network (CAN) method. CAN aligns variables into a unified 
coordinate system by learning an affine transformation matrix, improving classification and composite 
results. Specifically designed for cyclones, CAN utilizes a Transformer structure with Rotary Position 
Embedding (RoPE) to effectively capture relative positional information, unlike typical Convolutional 
Neural Networks (CNNs). Its classification network, informed by cyclone development equations, 
concentrates coordinate transformation within the affine matrix. Our evaluation using a cyclone 
dataset shows that CAN-based composites outperform traditional methods, yielding more significant 
results and more coherent variable coupling. CAN reveals several key common features: (1) cyclone 
rapid intensification in spring is dominated by cold air activity; (2) topography significantly impacts 
intensification; and (3) downstream ridge structures potentially influence intensification by causing 
anomalous subsidence, which leads to low-level dynamic uplift and limited baroclinic energy release. 
CAN effectively analyzes cyclone circulation and structure.
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Extratropical cyclones are important synoptic-scale weather systems with impacts on global climate and 
weather; rapidly intensifying cyclones, in particular, can result in extreme storms and precipitation. Extratropical 
cyclones occurring frequently in winter and spring over Mongolia and Northeast China significantly impact 
northern China’s weather. Statistical studies demonstrate a strong link between rapidly intensifying cyclones and 
spring storms. Long-lasting rapidly intensifying cyclones are a major cause of sandstorms in northern regions, 
especially amidst low precipitation and soil moisture1–4. Beijing experienced its worst sandstorm in a decade on 
March 15, 2021, with PM10 levels exceeding 8,000 µ g/m3, which was associated with a rapidly intensifying 
cyclone in this region5.

Rapidly intensifying cyclones are typically defined as those exhibiting a maximum deepening rate over 1 
Bergeron, or those with the upper percentiles of maximum deepening rates (e.g., the top 10% or top 5%). Previous 
studies on rapidly intensifying cyclones have largely focused on case studies, detailing their mechanisms. These 
studies have identified factors such as baroclinic instability6–11, positive vorticity and temperature advections12–15, 
latent heat release16–20, superposition of upper- and lower-level vorticity maxima10,21–28, downward propagation 
of upper-level momentum and dynamic forcing by upper-level jets29, and tropopause folding22,30–32. However, 
rapidly intensifying cyclones over land, particularly over Mongolia, are under-researched compared to oceanic 
cases. Some case studies suggest that the rapid development of rapidly intensifying cyclones over land may be 
related to jet enhancement, upper- and lower-level wind coupling, and the height of maximum heating rates19,33. 
Baroclinic instability, anomalous distributions of tropospheric potential vorticity, downward propagation of 
upper-level potential vorticity, and interactions between tropopause folding and cold fronts are also important 
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mechanisms. The role of latent heat is considered limited in rapidly intensifying spring cyclones over land due 
to the scarcity of precipitation34–38.

Individual case studies offer insights but are insufficient for generalized characteristics of rapid cyclogenesis; 
therefore, statistical analyses are essential. Although some statistical studies of rapid cyclogenesis in this region 
exist39, a detailed analysis of their structural features remains lacking. Further investigation of their structural 
attributes is required to fully elucidate the mechanisms driving rapid intensification.

Traditional composite methods typically use the cyclone center as a reference to composite individual 
cyclones point-to-point on a latitude-longitude grid. In previous studies, composite analysis has been used to 
investigate the genesis, development, and decay of extratropical cyclones40–48. In conjunction with subjective 
classification schemes, conceptual models of cyclone structure have been formulated, and the spatial distribution 
of meteorological variables along with the vertical coupling of upper- and lower-level features have been 
examined49–52. Additionally, the distribution of associated cloud and precipitation and their potential future 
changes has been analyzed by incorporating model data53–61.

However, the rotation of cyclones causes spatial misalignment of variables, particularly away from the cyclone 
center, blurring key mesoscale details such as frontal boundaries in traditional composite analyses62. This over-
smoothing of spatial structures hinders the accurate representation of cyclone characteristics and limits the 
ability of traditional composite methods to reveal generalized features. While some studies have attempted 
rotational alignment using fronts36,37,63, tracks33,64,65, or other features66,67, the complexity of cyclones means 
that single-feature alignment may mask other important information or introduce new biases.

To address the variable misalignment in traditional composite analysis, we propose a composite analysis 
method based on the Cyclone Alignment Network (CAN). Drawing inspiration from previous work on image 
registration68–73, CAN aligns variables with physically analogous influences on cyclone activity by learning affine 
transformations, enhancing the effectiveness of compositing, clustering, and modal decomposition. In terms 
of network design, we adopt a Transformer structure with Rotary Position Embedding (RoPE74 to effectively 
capture relative positional information between variables, unlike commonly used CNNs. To concentrate 
coordinate transformation within the affine matrix and to integrate rapidly intensifying cyclone development 
mechanisms, we restricted the size, form, and depth of the convolutional layers in the classification network. This 
machine learning approach, guided by cyclone development equations, overcomes the limitations of traditional 
composite methods, thereby revealing key mechanisms of rapidly intensifying cyclogenesis and improving 
predictive capabilities, especially for rapidly intensifying cyclones over land. This study uses CAN and composite 
analysis to analyze rapidly intensifying spring cyclones over the Mongolian Plateau-Northeast China Plain, 
demonstrating CAN’s advantages and providing new insights.

Results
Results on the MNIST dataset
To validate the effectiveness of the proposed method, we first conducted experiments using the classic MNIST75 
dataset (Modified National Institute of Standards and Technology database). Considering the wide use of CNNs 
in such problems, we constructed two networks: GAU-CAN (using GAUs, Gated Attention Units76 and CNN-
CAN (which replaced GAUs with CNNs). We evaluated the performance of GAUs by comparing the accuracy 
and clarity of the composite images generated by the two models on the MNIST classification task. To ensure 
fairness in the experiments, we adjusted the structure of CNN-CAN so that its number of parameters was the 
same as that of GAU-CAN (about 1.3 million). In this subsection, RAW represents the untransformed original 
images.

From the MNIST dataset, we randomly selected 3,000 samples per category, totaling 30,000 samples. Random 
rotations ranging from − 15° to 15° were applied to these samples to construct the training set. Similarly, 2,000 
samples were extracted for both the validation and test sets, ensuring no overlap among the three sets. The epoch 
with the highest accuracy on the validation set was selected as the final model. We averaged the raw/transformed 
images of each category in the test set to visualize the alignment effect of the affine transformation. The results 
are shown in Fig. 1. Both methods achieved an accuracy of nearly 99.4% on the test set.

Composite results of raw images (Fig.  1a) appear blurred, particularly at the edges, indicating a loss of 
detail when rotated images are directly composited. CNN-CAN (Fig. 1b) composites show improvement but 
still exhibit some edge blur. In contrast, GAU-CAN (Fig.  1c) composites display sharp digit contours, clear 
edges, and minimal blur. Figure 1d demonstrates GAU-CAN’s effective correction of position and orientation 
for rotated digits, showcasing its feature alignment capability.

The experimental results show that the proposed CAN can effectively align images with rotational features, 
generating clearer composite images. Compared with CNNs, the GAU demonstrates stronger capabilities in 
handling complex transformations, making it more suitable for the alignment task presented in this paper.

Results on the cyclone dataset
Spatial distribution of cyclone activity and deepening rate distribution
To validate the effectiveness of CAN for compositing extratropical cyclones over the Mongolian Plateau and 
Northeast China Plain in boreal spring, we first constructed a dataset following the method described in 
Methods section. Figure 2a shows that the activity centers of these cyclones are primarily distributed on the 
leeward side of mountains, specifically to the east of the Altai, Tianshan, and Greater Khingan Mountains, as well 
as over the Mongolian Plateau and the Northeast China Plain. This suggests a close relationship between these 
cyclones and the leeward slope effect. To facilitate a classification task linking variable fields with deepening 
rates, samples were divided into six categories (Fig. 2b): weak, medium, and strong based on both positive and 
negative deepening rates, by equally dividing each into thirds.
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Results of classification
Since GAU showed better performance than CNN for this task, experiments on the classification task were 
conducted solely on GAU-CAN, hereinafter referred to as CAN. The experiment results are shown in Table 1. 
For distinction, the original variable fields are designated as ‘raw fields’, and those processed by the affine 
transformation branch are referred to as ‘transformed fields’. For each sample x (raw field or transformed field), 
we calculate its similarity to the average feature µ k  of each category k in the training set. Here, category k 
is determined based on the true deepening rate, as shown in Fig. 2b. The average feature µ k  of category k is 
defined as:

	 µ k = 1
|Ck|

∑
xi∈ Ck xi, k ∈ {1, . . . , c} ,� (1)

Fig. 2.  Geographic locations and topography of Mongolia - Northeast China and distribution of 12-h 
deepening rate for all samples. a Geographic locations and topography of Mongolia - Northeast China (filled, 
unit: m), with data obtained from the ETOPO1, created using Python (version 3.9.5, ​h​t​t​p​s​:​/​/​w​w​w​.​p​y​t​h​o​n​.​o​
r​g​/​​​​​) and the Matplotlib (version 3.4.2, https://matplotlib.org/) library with the ‘GMT_globe’ colormap (can 
be obtained from ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​n​c​​l​.​u​c​​a​r​.​e​​​d​u​/​D​o​​c​u​m​​e​n​t​​/​G​r​a​p​h​​​i​c​s​/​C​​o​l​o​r​T​a​​b​l​e​s​​/​G​M​T​_​​g​l​o​b​e​.​s​h​t​m​l or created 
manually.). Frequency (black contour, units: number per year), and genesis (blue contour, units: number 
per year) for all cyclones which reach their maximum deepening rate over Mongolia - Northeast China. b 
Distribution of 12-h deepening rate for all samples in the target domain (in Fig. 2a). The unit is number of 
samples. The three equal parts of deepened and filled samples are labeled, and this classification is done as the 
target of the CAN.

 

Fig. 1.  The result of using a cyclone alignment network trained for distorted MNIST digit classification. 
a Average of the input data. The input to the cyclone alignment network are images of MNIST digit that 
are distorted with random rotation, to emulate rotation of cyclones. b Average of the output of the cyclone 
alignment network, after applying the transformation, but using CNN in transformer branch. c Average of the 
output of the cyclone alignment network, after applying the transformation, using GAU in transformer branch. 
d Some samples of inputs (left) and outputs (right) using GAU-CAN.
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where Ck  represents the set of all samples belonging to category k in the training set, |Ck| is the number of 
samples in set Ck , N  is the total number of samples, and c=6 is the total number of categories. Then, we select 
the category with the highest similarity as the predicted category of the sample, that is:

	
cluster = argmax

k
Similarity(µ k, x), k ∈ {1, . . . , c} . � (2)

Based on these classification results, we verify the superiority of CAN by comparing the classification accuracy 
of raw fields and transformed fields. The classification accuracy of the raw and transformed fields using different 
similarity measurements is shown in Table 1.

Table 1 shows that CAN achieves higher classification accuracy, indicating greater intra-class similarity and 
reduced smoothing in composites. CAN’s enhanced classification accuracy (over 20% improvement across 
algorithms) demonstrates its effectiveness by better reflecting true cyclone structure in composite results. 
Furthermore, JSD-based (Jensen-Shannon Divergence) classification consistently outperforms RMSE and 
cosine similarity, suggesting that distributional differences are more crucial than numerical values in cyclone 
deepening.

Case studies indicate that the rapidly intensifying cyclones over the Mongolian Plateau-Northeast China 
Plain in spring are typically linked to cold air activity. Cold advection, particularly strong frontal advection, 
drives rapid cyclone development by inducing frontogenesis and vertical motion13. Assuming that this cold 
advection feature exhibits an approximate spatial distribution pattern during cyclone intensification, the intensity 
of maximum cold advection is a crucial characteristic related to rapidly intensifying cyclone development. To 
analyze whether the improvement in CAN’s cyclone classification and composite results holds practical physical 
significance, we conducted a comparison. We focused on two key metrics: the Difference of Maximum Cold 
Advection based on Mean Fields (DMF, Eq. 3aa) and the Difference of Mean Maximum Cold Advection based 
on Individual Samples (DIS, Eq. 3ab). These metrics were compared between the raw and transformed fields 
for two types of events: fastest deepening (deepening III, characterized by a strong positive deepening rate, as 
shown in Fig. 2b) and fastest filling (filling III, with a strong negative deepening rate, also in Fig. 2b). In Eq. 
3aa and 3b, C− represents the set of fastest filling samples, C+ is the set of fastest deepening samples, |C| 
is the number of samples in the set, ω  represents one sample, S is the latitude and longitude coordinates. 
Subsequently, we calculated the percentage of the composite value of the maximum temperature advection 
difference relative to the actual value, T advDMF

T advDIS
, as an indicator to examine the ability of the composite analysis 

results to reveal the true characteristics of cyclones (Table 2). The results show that, whether at the lower or upper 
levels, the percentage of DMF to DIS in the transformed field is significantly higher than that in the raw field. 
Therefore, the composite results after CAN transformation are closer to the actual situation. This suggests that 
CAN transformation achieves a more reasonable alignment of variable fields compared to typical compositing. 
This enhanced alignment better reflects the evolving structural characteristics of cyclone development, as well 
as changes in temperature and vorticity advection, thus further revealing how thermodynamic and dynamic 
processes influence cyclone development.

	
T advDMF = min

s∈ S

1
|C+|

∑
ω ∈ C+

T adv (ω , s) − min
s∈ S

1
|C−|

∑
ω ∈ C−

T adv (ω , s) , � (3a)

	
T advDIS = 1

|C+|
∑

ω ∈ C+
min
s∈ S

T adv (ω , s) − 1
|C−|

∑
ω ∈ C−

min
s∈ S

T adv (ω , s) . � (3b)

To more clearly demonstrate the efficacy of the composite method based on CAN, we further compared the 
spatial distribution of composite fields of some variables on pressure levels between the raw and transformed 

Pressure Level Raw fields Transformed fields

850 hPa 59.4% 75.3%

500 hPa 82.1% 94.3%

Table 2.  Percentage of the difference between the maximum cold advection of the mean field to the mean 
difference between the maximum cold advection of cases, considering the clusters of the fastest deepening and 
filling.

 

Metrics Acc.raw. Acc.T rans.

Improvement
rate

RMSE 26.8% 32.2% 20%

Cosine Similarity 26.6% 32.9% 24%

JSD 27.9% 34.1% 22%

Table 1.  Accuracy of 6 classification of original and transformed fields with different metrics. Classification is 
performed using the nearest neighbor method centered on the mean field of each category.
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fields for deepening III and filling III events. The results indicate significant differences between the two 
approaches, evident in the following aspects (Figs. 3, 4, 5 and 6).

Figure 3 displays the composite results of vertical velocity, potential temperature, geopotential height, and 
topographic elevation at various pressure levels for both raw and transformed fields, along with the average 
850 hPa front. Figure 4, in contrast, presents the average fields of vertical velocity, potential temperature, and 
geopotential height on pressure levels, alongside surface topographic elevation.

Comparing low-level composites, transformed fields (Figs. 3b1, b2) more effectively illustrate topography-
wind interactions than raw fields (Figs. 3a1, a2). Transformed fields clearly show the coupling between topography 
and other variables, which is highly consistent with the typical characteristics of lee cyclones77–79. Specifically, 
they capture upward motion on the windward slope behind the cold front and downward motion on the leeward 
slope ahead of it (near the intersection of AB and CD in Fig. 3b1). Further evidence for this topography-wind 
interactions is seen in the average fields (Fig. 4b1), which shows a northwest-to-southeast distribution of 
ascending-descending-ascending vertical motion near the topography, consistent with uplift on the windward 
side and descent on the leeward side. This characteristic is also evident in the cross-section perpendicular to 
the cold front (Fig. 8b4). This feature is not obvious in the raw fields, and the low-level ascent on the side of the 
cold front is not observed in Fig. 8a4. Additionally, an increased geopotential height is observed near the surface 
cold front. These are key features related to rapid cyclone intensification driven by strong cold air. These features 
are blurred or misaligned in raw fields, obscuring physical processes. Furthermore, transformed fields more 
accurately enhance climatological cold/warm regions west/south of the cyclone, as well as the upward motion 
consistent with cold air-induced lifting. In contrast, less intense cyclones (Figs. 3c1, c2) lack local topography 
anomalies and associated vertical motion anomalies, displaying typical frontal vertical motion instead. This 
highlights the crucial role of topography-meteorological element interaction in rapid cyclone intensification 
over the Mongolian Plateau-Northeast China Plain.

Upper-level composites reveal greater advantages of transformed fields. Raw field composites suggest cyclone 
intensification is driven by warm air due to large-scale positive anomalies in geopotential height and potential 
temperature (Figs. 3a3, a4). However, this contradicts synoptic observations, especially for rapidly intensifying 
spring cyclones over the Mongolian Plateau, where rapid development is linked to southward cold air movement. 

Fig. 3.  Composites of vertical velocity, potential temperature and geopotential height on pressure levels, 
with surface topographic elevation and mean 850 hPa fronts. Composites (a1-a4 and b1-b4: deepening 
III – filling III, c1-c4: deepening II – filling II) of vertical velocity (salmon/teal contours indicate positive/
negative values, thin/thick lines indicate non-significant/significant values respectively, unit: Pa/s, contour 
interval is 0.015 Pa/s), potential temperature (brown/blue contours for positive/negative values, thin/thick 
lines indicate non-significant/significant values respectively, unit: K, contour interval is 0.7 K), geopotential 
height (a2-a4, b2-b4, c2-c4, shaded, dotted areas indicate significance test passed, unit: 496 gpm) on pressure 
levels, topographic elevation (a1, b1 and c1, shaded, dotted areas indicate significance test passed, unit: 578 m), 
and mean 850 hPa fronts (red solid lines). a1-a4 Composites of the raw fields. b1-b4 and c1-c4 Composites 
of the transformed fields. 1–4 Correspond to levels of 850 hPa, 850 hPa, 500 hPa and 200 hPa, topographic 
elevation is filled in 1 and geopotential height is filled in 2, 3 and 4. The AB (yellow) and CD (steel blue) 
lines characterize the positions perpendicular and parallel to the 850 hPa cold front. All variables in the raw 
and transformed data were normalized by variable on the same scale. The shown anomalies are statistically 
significant at the 90% confidence level, based on a two-tailed Student’s T test.
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Fig. 5.  Composites of temperature advection, vorticity advection and potential vorticity on pressure levels, 
and mean 850 hPa fronts. Composites (a1-a2 and b1-b2: deepening III – filling III, c1-c2: deepening II – filling 
II) of temperature advection (salmon/teal contours for positive/negative values, thin/thick for insignificant/
significant values, contour interval is 5 × 10−9 K/s for 850 hPa and 10 × 10−9 K/s for 300 hPa), vorticity 
advection (brown/blue contours for positive/negative values, thin/thick for insignificant/significant values, 
contour interval is 10−9 s−2 for 850 hPa and 5× 10−9 s−2 for 300 hPa) and potential vorticity (filled, hatches 
for significant values, unit: 0.25 PVU for 850 hPa and 1 PVU for 300 hPa) on pressure levels, and mean 850 hPa 
fronts (red solid lines). a1-a2 Composites of the raw data. b1-b2 and c1-c2 Composites of the transformed 
data. 1–2 Correspond to 850 hPa and 300 hPa. The AB (yellow) and CD (blue-gray) lines characterize the 
positions perpendicular and parallel to the 850 hPa cold front. All variables in the raw and transformed data 
were normalized by variable on the same scale. The shown anomalies are statistically significant at the 90% 
confidence level, based on a two-tailed Student’s T test.

 

Fig. 4.  Vertical velocity, potential temperature, and geopotential height averaged on pressure levels, with 
surface topographic elevation. Averages (a1-a4 and b1-b4: deepening III, c1-c4: filling III) of vertical 
velocity (salmon/teal contours indicate positive/negative values, unit: Pa/s, contour interval is 0.012 Pa/s for 
850 hPa, 0.048 Pa/s for 500 hPa and 0.009 Pa/s for 200 hPa), potential temperature (brown contours, unit: 
K, contour interval is 2 K), geopotential height (a2-a4, b2-b4, c2-c4, shaded, unit: gpm) on pressure levels, 
and topographic elevation (a1, b1 and c1, shaded, unit: m). a1-a4 Averages of the raw fields. b1-b4 and c1-
c4 Averages of the transformed fields. 1–4 Correspond to levels of 850 hPa, 850 hPa, 500 hPa and 200 hPa, 
topographic elevation is filled in 1 and geopotential height is filled in 2–4.
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In contrast, transformed fields (Figs. 3b3, b4) show a reduced positive geopotential height anomaly to the south 
of the cyclones and an overall negative potential temperature anomaly, correctly indicating that strong cold air 
from the north drives intensification. This aligns with actual observations, highlighting CAN’s ability to capture 
key physics.

Compared to rapidly intensifying cyclones, less intense cyclones (Figs. 3c3, c4) show a cold anomaly center 
at 500 hPa shifted northeast and a near absence of positive potential temperature anomaly at 200 hPa. These 
differences underscore that stronger cold air intrusion and significant tropopause folding are key characteristics 
of rapidly intensifying cyclones.

Evidence for stronger cold air intrusion is multifaceted. Average fields reveal that rapidly intensifying cyclones 
(Deepening III) have a deeper, north-south oriented 500  hPa temperature trough located northwest of the 
cyclone, whereas less intense cyclones (Filling III) show a shallower, northwest-southeast oriented trough closer 
to the center (Figs. 4b3, c3). Furthermore, analysis of the 500 hPa cold anomaly center in cross-sections shows 
its movement from C to D (northeastward) for less intense cyclones (Fig. 8b3, c3), a pattern also corroborated 
by advection centers (Fig. 10b3, c3). In both longitudinal cross-sections and those perpendicular to the front, 
rapidly intensifying cyclones display a stronger cold core with corresponding stronger subsidence (Figs. 8b1, b4, 
c1, c4), and a more vigorous, extensive cold advection on the cold front side (Figs. 10b1, b4, c1, c4), all indicating 
a more pronounced cold air intrusion.

For tropopause folding, a downward-extending region of high potential vorticity values is observed, which is 
significantly more pronounced in rapidly intensifying cyclones (Deepening III) than in less intense ones (Filling 
III) (Figs. 6b2, c2 and Figs. 10b1, b4, c1, c4). This clearly indicates more significant tropopause folding during 
rapid intensification.

Figure 5 shows the composite results of temperature advection, vorticity advection, and potential vorticity 
for both raw and transformed fields, along with the average 850 hPa front. Correspondingly, Fig. 6 presents the 
averaged fields of temperature advection, vorticity advection, and potential vorticity on pressure levels.

In low-level composites, raw fields show weak advection and potential vorticity anomaly signals, making it 
difficult to effectively identify cyclone-related dynamic and thermodynamic processes (Fig. 5a2). In contrast, 
transformed fields clearly reveal a significant positive potential vorticity anomaly (yellow shaded area near 
the cyclone center in Fig. 5b2), accompanied by strong vorticity and temperature advection. These signals are 
consistent with frontal distributions and classical cyclone theory, indicating strong cold air activity as a key 
driver for rapid intensification. Raw fields fail to capture these crucial low-level features, suggesting limitations 
in showing near-surface cyclone structure. These conclusions are also reflected in the average fields. Composites 
of less intense cyclones (Fig. 5c1) show weaker advection anomalies, indicating weaker cold air activity, further 
emphasizing strong cold air as crucial for rapid intensification.

At upper levels, although differences between raw and transformed fields are less stark than at lower levels, 
transformed fields show a larger, stronger positive potential vorticity anomaly (Figs.  5a1, b1). Downward 
propagation of upper-level positive potential vorticity is key to rapid cyclone intensification by strengthening 
low-level circulation. The enhanced positive potential vorticity anomaly in transformed fields demonstrates 
their better ability to capture upper-level dynamics, better reflecting cyclone vertical structure and development. 
These conclusions are also reflected in the average fields. Compared to less intense cyclones (Fig. 5c2), rapidly 

Fig. 6.  Temperature advection, vorticity advection and potential vorticity averaged on pressure levels. Averages 
(a1-a2 and b1-b2: deepening III, c1-c2: filling III) of temperature advection (salmon/teal contours for positive/
negative values, contour interval is 5 × 10−9 K/s for 850 hPa and 10 × 10−9 K/s for 300 hPa), vorticity 
advection (brown/blue contours for positive/negative values, contour interval is 10−9 s−2 for 850 hPa and 
5× 10−9 s−2 for 300 hPa) and potential vorticity (filled, unit: PVU) on pressure levels. a1-a2 Averages of the 

raw data. b1-b2 and c1-c2 Averages of the transformed data. 1–2 Correspond to 850 hPa and 300 hPa.
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intensifying cyclones exhibit more significant positive potential vorticity anomalies on the cold front side and 
vorticity advection near the center, highlighting these as important drivers for their intensification.

In summary, composites based on CAN not only demonstrate excellent performance in classification 
accuracy but also more accurately reflects the key physical characteristics of rapidly intensifying cyclones. In 
the lower levels, the transformed field clearly reveals the coupling relationship between cold air activity and 
cyclone development. For example, it clearly captures: (1) the topography-wind interaction consistent with 
characteristics consistent with lee cyclogenesis; (2) the enhancement of upward motion and temperature 
anomalies associated with the southward movement of strong cold air; and (3) the advection and potential 
vorticity anomalies consistent with the frontal distribution. Simultaneously, in the upper levels, the transformed 
field also better captures the potential temperature, geopotential height, and potential vorticity anomalies 
consistent with synoptic observations. These results indicate that the method proposed in this paper can capture 
the key elements influencing cyclone development, thereby demonstrating its potential in understanding rapidly 
intensifying cyclone development.

Composites of circulation characteristics
To better analyze the circulation characteristics of rapidly intensifying spring cyclones over the Mongolian 
Plateau-Northeast China Plain from the perspective of the transformed fields, we present the composite vertical 
profiles of cyclone circulation characteristics under the transformed fields (deepening III – filling III). These 
are then compared with the composites of the raw field, as shown in Fig. 7. Additionally, Fig. 8 provides vertical 
cross sections of anomaly geopotential height, potential temperature, and averaged vertical velocity.

Through comparison, it is evident that transformed fields exhibit clearer characteristics in several aspects. 
Firstly, transformed fields more effectively capture the key features related to upper-level cold lows. In the regional 
latitudinal cross-section (Figs. 7a1, b1), the composite of potential temperature in the transformed fields shows 
significant negative anomalies, coupled with negative mid-to-upper level geopotential height anomalies, which 
clearly indicates a stronger upper-level cold low system. This suggests that the rapid intensification of cyclones 
is closely related to the activity of upper-level cold lows. In contrast, the raw fields composite shows warmer 
potential temperature and higher geopotential height anomalies, failing to clearly reveal the upper-level cold 
lows.

Fig. 7.  Vertical cross sections of composites of geopotential height, potential temperature and vertical velocity. 
Vertical cross sections of composites (a1-a4 and b1-b4: deepening III – filling III, c1-c4: deepening II – filling 
II) of geopotential height (salmon/teal contours for positive/negative values, thin/thick for insignificant/
significant values, contour interval is 166 gpm), potential temperature (brown/blue contours for positive/
negative values, thin/thick for insignificant/significant values, contour interval is 0.8 K) and vertical velocity 
(filled, hatches for significant values, unit: 0.1 Pa/s). a1-a4 Composites of the raw data. b1-b4 and c1-c4 
Composites of the transformed data. a1, b1 and c1 Longitudinal cross-section. a2, b2 and c2 Meridional 
cross‐section. a3, b3 and c3 Cross‐section along line CD (parallel to the 850 hPa cold front) in Fig. 3. a4, b4 
and c4 Cross‐section along line AB (perpendicular to the 850 hPa cold front) in Fig. 3. All variables in the raw 
and transformed data were normalized by variable on the same scale. The shown anomalies are statistically 
significant at the 90% confidence level, based on a two-tailed Student’s T test.
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Furthermore, transformed fields can more effectively capture the key features related to lower-level cold air 
activity and vertical circulation. In the transformed field, significant anomalies of low potential temperature 
and high geopotential height are evident on the west side of the cyclone at lower levels. This indicates cold air 
accumulation due to sinking air ahead of topography. The leading edge of this cold air spatially coincides with 
columnar ascending anomalies, associated with relatively high potential temperature and geopotential height 
anomalies near the cyclone center. This demonstrates that strong vertical circulation in rapidly intensifying 
cyclones is related to dynamic uplift from lower-level cold air, consistent with synoptic observations. In contrast, 
raw fields show warmer potential temperature and higher geopotential anomalies, along with unclear variable 
coupling, different from synoptic observations.

Moreover, transformed fields uniquely capture a cold sinking anomaly on the north side of the cyclones, absent 
in raw fields. The regional meridional cross-section (as shown in Figs. 7a2, b2) shows that the characteristics on 
the north side of the cyclone are particularly significant in the transformed fields: specifically, a sinking vertical 
velocity anomaly on the north side of cyclones, which coincides with colder potential temperature, upper-
level low geopotential height anomalies, and lower-level high geopotential height anomalies. This indicates an 
anomalous cold sinking airflow. Combined with the distribution of the mid-to-upper level geopotential height 
field in Fig. 3b2, it can be inferred that this is likely related to the convergence, cold advection, and negative 
vorticity advection brought by the ridge area downstream of the upper-level trough. This ridge-like curvature 
has also been noted in previous studies39, but the characteristics of this cold sinking anomaly are only clearly 
evident in the transformed field. In contrast, raw fields lack significant signals on the north side of cyclones. 
In contrast, raw fields lack significant signals on the north side of cyclones. Furthermore, the overlap of low 
potential temperature and low geopotential height anomalies with the ascending anomaly makes it difficult to 
provide a reasonable explanation.

Additionally, transformed fields better capture the feature characteristics near fronts. The cross-sections 
parallel to the low-level cold front are shown in Figs. 7a3, b3. In the transformed fields (Fig. 7b3), the circulation 
center exhibits an ascending anomaly, while both sides show sinking anomalies. These sinking regions correlate 
with colder temperatures, upper-level low, and lower-level high geopotential height anomalies, indicating cold 
sinking anomalies. Conversely, the ascending center shows a relatively warm signal, indicating warm ascending 
anomaly. This suggests a characteristic of rapidly intensifying cyclones in this region: stronger cold sinking 
on both sides of the cyclone converges at lower levels, forcing the central warm air to rise and forming a more 
intense but narrower ascending region. The raw fields (Fig. 7a3) failed to clearly show these characteristics.

The cross-sections perpendicular to the low-level cold front are shown in Figs. 7a4, b4. Transformed fields 
(Fig. 7b4) clearly show asymmetric frontal characteristics: a significant cold anomaly northwest of the cold front 
and a warm anomaly southeast. The cold side shows a lower-level high/upper-level low geopotential height 
configuration. At the leading edge of the cold high anomalies, a vertical velocity dipole (ascending-sinking) 

Fig. 8.  Vertical cross sections of anomaly geopotential height, potential temperature and averaged vertical 
velocity. Vertical cross sections (a1-a4 and b1-b4: deepening III, c1-c4: filling III) of anomaly geopotential 
height (salmon/teal contours for positive/negative values, contour interval is 30 gpm), potential temperature 
(brown/blue contours for positive/negative values, contour interval is 2 K) and averaged vertical velocity 
(filled, unit: Pa/s). a1-a4 for the raw data. b1-b4 and c1-c4 for the transformed data. a1, b1 and c1 Longitudinal 
cross-section. a2, b2 and c2 Meridional cross‐section. a3, b3 and c3 Cross‐section along line CD (parallel to the 
850 hPa cold front) in Fig. 3.3. a4, b4 and c4 Cross‐section along line AB (perpendicular to the 850 hPa cold 
front) in Fig. 3.3.
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and a strong potential temperature gradient are evident, demonstrating coupling with topography (Fig. 3b1). 
This suggests windward cold air accumulation forms a lower-level cold high. Southeast of the topography, 
the accumulated cold air sinks on the leeward slope, forcing the warm air ahead to rise. This process forms a 
strong temperature gradient on the leeward slope, thereby enhancing both the frontal and the cyclone’s vertical 
circulation. In contrast, the composite signal of the original field (Fig.  7a4) is generally more inclined to a 
symmetrical structure, and the coupling characteristics of variables and topography are not clear.

In contrast, less intense cyclones (Figs. 7c1-c4) show a weaker cold potential temperature anomaly at the cold 
front, lack a deep downward anomaly northeast of the cyclone, and feature a broader upward area. This indicates 
that strong cold air activity and significant downward motion from the ridge downstream are significant features 
of rapidly intensifying cyclones. These features contribute to forming a relatively narrow but intense upward 
zone, which enables concentrated baroclinic energy release and promotes rapid cyclone development.

From the above comparative analysis, it is evident that transformed fields have significant advantages over 
raw fields in revealing the key characteristics of rapid cyclone intensification, especially in capturing the feature 
characteristics such as upper-level cold lows, lower-level cold air activity, topography, and fronts. Transformed 
fields can provide more significant and physically meaningful signals. Furthermore, transformed fields also 
reveal a characteristic of rapidly intensifying cyclones: narrow but intense upward regions (Figs. 8b1, 3, c1, 3), 
which raw fields struggle to effectively demonstrate.

Composites of advection characteristics
To better analyze the characteristics of rapidly intensifying cyclones over the Mongolian Plateau-Northeast 
China Plain in spring from the perspective of transformed fields, we composite the vertical profiles of cyclone 
potential vorticity, temperature, and vorticity advection under the transformed fields (deepening III – filling III), 
and compare them with the raw field composites, as shown in Fig. 9. Furthermore, Fig. 10 presents vertical cross 
sections of averaged temperature advection, vorticity advection, and potential vorticity.

Figures 9a1, b1, a2, and b2 display the regional latitudinal and longitudinal cross-sections. While transformed 
and raw fields show similarities in variable distributions, the transformed fields offer distinct advantages. 
Transformed fields show a stronger upper-level positive potential vorticity (PV) anomaly and a larger, more 
intense positive PV anomaly northwest of the cyclone, clearly indicating downward transport of upper-level PV 
during rapid intensification. Lower-level advection anomalies are stronger and spatially clearer, suggesting better 

Fig. 9.  Vertical cross sections of composites of temperature advection, vorticity advection and potential 
vorticity. Vertical cross sections of composites (a1-a4 and b1-b4: deepening III – filling III, c1-c4: deepening 
II – filling II) of temperature advection (salmon/teal contours for positive/negative values, thin/thick for 
insignificant/significant values, contour interval is 10−8 K/s), vorticity advection (brown/blue contours for 
positive/negative values, thin/thick for insignificant/significant values, contour interval is 5 × 10−9 s−2) 
and potential vorticity (filled, unit: 1 PVU, hatches for significant values). a1-a4 Composites of the raw data. 
b1-b4 and c1-c4 Composites of the transformed data. a1, b1 and c1 Longitudinal cross-section. a2, b2 and 
c2 Meridional cross‐section. a3, b3 and c3 Cross‐section along line CD (parallel to the 850 hPa cold front) 
in Fig. 3. a4, b4 and c4 Cross‐section along line AB (perpendicular to the 850 hPa cold front) in Fig. 3. All 
variables in the raw and transformed data except PV were normalized by variable on the same scale. The shown 
anomalies are statistically significant at the 90% confidence level, based on a two-tailed Student’s T test.
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capture of small-scale structures potentially important for rapid intensification. Furthermore, transformed fields 
exhibit more coherent physical fields coupling (Fig. 9b2). Positive (negative) temperature advection anomalies 
and positive (negative) vorticity advection anomalies correspond better with upward (downward) anomalies 
(Fig. 7b2), indicating improved representation of physical process interactions.

The cross-sections parallel to the lower-level cold front are shown in Fig. 9a3 and b3. At the lower level, the 
transformed fields and raw fields show significant differences. Raw fields show weak lower-level signals, but 
transformed fields exhibit a significant temperature advection anomaly at lower levels, spatially consistent with 
vertical motion anomalies in Fig. 7b3. At higher levels (around 300 hPa) in transformed fields, upward anomalies 
coincide with positive vorticity advection anomalies, indicating vorticity advection drives upper-level vertical 
motion. The spatial overlap of upper and lower-level upward areas contributes to the rapid intensification of the 
cyclone’s vertical circulation.

The cross-sections perpendicular to the lower-level cold front are shown in Figs. 9a4 and b4. Overall, 
transformed fields more clearly show the tilted frontal structure and upper-lower level variable coupling. 
Compared to the raw fields, the transformed fields show a west-tilting positive PV anomaly from the lower to 
the upper levels and a corresponding negative temperature advection anomaly. Strong advection anomalies and 
PV anomalies may correspond to frontal intensification. Comparing Fig. 10b4 and c4, it can be observed that 
the advection in deepening III exhibits a tilted structure, while the advection in Filling III shows a relatively 
barotropic structure. This indicates that a strong, tilted front indeed exists in deepening III, while the front 
in Filling III is relatively insignificant. A significant upper-level positive PV anomaly at the frontal position 
further highlights the downward transport of upper-level PV in rapidly intensifying cyclones. At lower 
levels, temperature and vorticity advection anomalies show a west-tilting distribution consistent with frontal 
orientation, supporting frontal maintenance and development. While this lower-level west-tilting structure 
has been observed in synoptic analysis4,35,80, raw field composites generally do not capture it. In contrast, our 
method distinctly demonstrates this as a significant characteristic of rapidly intensifying cyclones.

In contrast, composites of less intense cyclones (Figs.  9c1-c4) show weak cold air advection around the 
cyclone, with its presence on the cold front side limited to lower levels. The positive vorticity advection anomaly 
at 300 hPa near the cyclone center is also weak, and a positive potential vorticity anomaly is lacking on the cold 
front side. These differences indicate that several features are significant characteristics of rapidly intensifying 
cyclones: strong cold air advection resulting from intense cold air activity, and pronounced downward motion 

Fig. 10.  Vertical cross sections of averaged temperature advection, vorticity advection and potential vorticity. 
Vertical cross sections (a1-a4 and b1-b4: deepening III, c1-c4: filling III) of averaged temperature advection 
(salmon/teal contours for positive/negative values, contour interval is 10−8 K/s), vorticity advection (brown/
blue contours for positive/negative values, contour interval is 5 × 10−9 s−2) and potential vorticity (filled, 
unit: PVU). a1-a4 Averages of the raw data. b1-b4 and c1-c4 Averages of the transformed data. a1, b1 and c1 
Longitudinal cross-section. a2, b2 and c2 Meridional cross‐section. a3, b3 and c3 Cross‐section along line CD 
(parallel to the 850 hPa cold front) in Fig. 3.3. a4, b4 and c4 Cross‐section along line AB (perpendicular to the 
850 hPa cold front) in Fig. 3.3.
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in the periphery coupled with upward motion in the center, driven by strong upper-level positive vorticity 
advection. Combined with the downward transport of upper-level positive potential vorticity, these factors 
promote the enhancement and rapid development of the cyclone circulation.

The above comparative analysis clearly demonstrates that transformed fields have significant advantages 
over raw fields in revealing the key characteristics of rapid cyclone intensification, especially in their ability to 
highlight the upper-level positive potential vorticity anomaly and its downward transport, lower-level advection 
anomalies, and the representation of physical process interactions. Furthermore, the transformed fields effectively 
capture the tilted frontal structure and vertical coupling, which are not effectively captured by raw field analysis.

Discussion
Spatial misalignment from cyclone rotation limits traditional composite analysis. To address this, the Cyclone 
Alignment Network (CAN) is proposed, adaptively aligning features by learning spatial relationships. By 
reducing blurring caused by spatial misalignment, CAN better reveals cyclone structure. Tests on MNIST 
and cyclone datasets demonstrate that CAN improves classification accuracy and composite field quality 
compared to traditional methods. CAN’s improved performance is likely due to its enhanced capture of spatial 
relationships among low-level variables such as topography and advection. These relationships are crucial 
for cyclone intensification over the Mongolian Plateau-Northeast China Plain in spring but are often poorly 
represented in traditional composites. These rapidly intensifying cyclones exhibit characteristics similar to 
those of lee cyclones. CAN effectively reveals the influence of cold air, topography, and other factors on cyclone 
development, which are often blurred in traditional composites. CAN analysis reveals these rapidly intensifying 
cyclones located ahead of high-curvature troughs with strong divergence. Downstream ridges with subsidence 
limit the upward extent, thereby concentrating baroclinic energy release. All these features are indistinct in 
traditional composites. Previous case studies have highlighted the importance of baroclinic distribution of low-
level temperature/vorticity advection for rapid intensification, but this is often missed in typical composites. 
CAN clearly displays this phenomenon, confirming its importance for spring rapid intensification in this region.

In summary, CAN effectively displays characteristics of rapidly intensifying cyclones. Furthermore, it can 
analyze other cyclone features (e.g., movement, precipitation) by changing target variables. Future research 
could enhance CAN by increasing data resolution and expanding to 3D affine transformations to capture vertical 
cyclone structure.

Methods
Cyclone identification and cyclone deepening rates
We used an objective identification method63 to identify extratropical cyclones over land in East Asia during 
boreal spring (1979–2023) and extracted their tracks and intensities. The primary advantage of this method is 
its sole reliance on sea level pressure data, which, after appropriate screening, yields relatively reliable cyclone 
track data81. Using these identified tracks, we subsequently obtained the distribution of various meteorological 
variables. These included surface variables (pressure, 10-m wind speed, and temperature) and variables at 
multiple pressure levels (850, 700, 500, 300, 200, and 100 hPa), such as temperature, humidity, geopotential 
height, horizontal wind, and vertical velocity. All data were extracted within a 20° × 20° box centered on each 
cyclone.

The calculation of cyclone deepening rate ( R) was calculated using a 12-hour time window and a standard 
latitude of 60°N:

	
R =

[
Pt−6−Pt+6

12

]
×

[
sin60◦

sin((ϕ t−6+ϕ t+6)/2)

]
, � (4)

where P  represents the sea level pressure at the cyclone center, ϕ  denotes the latitude of the cyclone center 
(unit: °), and the subscripts t − 6 and t + 6 indicate the values before and after 6 h, respectively.

Thermal front parameter
As extratropical cyclones are the primary focus of this study, understanding frontal structure is essential. We use 
the thermal front parameter (TFP)82 to identify the location of fronts. The calculation of TFP is given by:

	 T F P = −∇ τ |∇ τ | • ∇ τ
|∇ τ | , � (5)

where τ  represents any suitable thermodynamic parameter. For the purpose of this study, 850 hPa potential 
temperature is chosen for τ . Based on previous studies83–85, the frontal location is then determined by the line 
connecting the positions of maximum TFP.

Cyclone alignment network (CAN)
Overview of CAN
We design a network capable of adaptive spatial alignment of cyclone features to better represent variables 
related to cyclone development in composite analysis. This architecture integrates a Transformer branch, an 
affine transformation branch, and a convolutional branch, achieving this alignment via a classification task 
(Fig. 11). To validate the method, we conducted experiments using a randomly rotated MNIST dataset and a 
dataset of spring extratropical cyclones over East Asian land areas. The extraction method for the cyclone dataset 
is detailed in Section Cyclone Identification and Cyclone Deepening Rates.
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Transformer branch
The relative position and interaction of variable fields are important in cyclone circulation analysis. Therefore, 
the relative distribution of variables is a key factor to consider when aligning feature fields. However, identifying 
and characterizing the distribution of variables related to the target variable (the deepening rate) is a complex 
task. To address this challenge through adaptive spatial localization, we employ a neural network architecture. 
Recognizing the better ability of the Transformer86 to capture relative positional information compared to 
traditional CNNs, we employ it as the core component for providing spatial localization cues.

In the Transformer branch, we first standardize each variable in the original fields and then extract local 
features using two 3 × 3 convolutional layers. The second convolutional layer’s stride is set to 2, meaning 
the kernel shifts by two grid points in each dimension as it slides across the input feature map. This reduces 
the output feature map’s dimensions by half, achieving downsampling and reducing computation. These 
feature maps are then input into an encoder consisting of four GAU modules. The GAU module combines 
self-attention86 and a feedforward neural network (FNN) to effectively and efficiently capture long-range 
dependencies between variables. RoPE is applied to each GAU module to enhance the model’s perception of 
relative position information. This allows the model to adaptively learn spatial relationships between variables, 
providing key cues for feature alignment.

Affine branch
Due to the rotation of cyclones, variables associated with cyclone activity can be spatially misaligned. For 
example, the position of features such as fronts may vary across different cyclone cases. To align variables with 
similar influences on cyclone activity to the same coordinate system, the original variable fields require an affine 
transformation. This transformation involves a rotation component to compensate for the cyclone’s rotation, 
as well as potential minor shear, scaling, and translation adjustments for fine-tuning the alignment. The affine 
transformation branch is responsible for performing this alignment.

The affine transformation branch receives the output tensor from the Transformer branch. To apply the affine 
transformation to the original variable fields, this branch first generates parameters for the affine transformation 
matrix using a GLU (Gated Linear Unit87 and a global average pooling layer. These parameters define a mapping 
from the original coordinate system to a new coordinate system. This affine transformation matrix is then used 
to transform the grid point coordinates of the original variable fields to new positions. Since the transformed 
coordinates are usually non-integers, we use bilinear interpolation68 to compute the values at the new positions 
to ensure the continuity. Bilinear interpolation is a common interpolation method that estimates the variable 
values at the new positions by taking a weighted average of the values of the nearest four grid points, which can 
effectively handle spatial scaling and rotation.

In general, the coordinate transformation under the Cartesian coordinate system can be expressed as:

	

[
x′

y′

1

]
= A

[
x
y
1

]
,� (6)

where x, y are the original spatial coordinates, x′ , y′  are the transformed spatial coordinates, and A ∈ R3× 3 
is the required affine transformation matrix. This matrix has 6 degrees of freedom and can represent scaling, 
rotation, translation, shear, and their combinations:

Fig. 11.  The structure of Cyclone Alignment Network (CAN). The original variable field is input to the 
Transformer branch, which learns attention weights θ  to capture relative positional information between 
variables. These weights are then passed to the affine branch, which generates an affine transformation matrix 
A to rotate, scale, translate, and shear the original field. The transformed field is then passed to a deep CNN. 
The CNN’s kernel size and network depth, is designed based on constraints derived from cyclone development 
equations to extract physically consistent features for cyclone classification.
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A =

[
a b c
d e f
0 0 1

]
� (7)

Directly learning these six parameters can lead to unpredictable or unstable transformations. For example, it is 
typically desirable to avoid excessive scaling or shearing and to constrain the rotation angle during transformation. 
To address these issues, we decompose the affine transformation into more basic transformations and control 
them separately.

Let ASc, AR, AT , and ASh denote the transformation matrices corresponding to the scaling, rotation, 
translation, and shear operations, respectively. Then:

	
ASc =

[
sx 0 0
0 sy 0
0 0 1

]
, � (7a)

	
AR =

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
, � (7b)

	
AT =

[
1 0 Tx

0 1 Ty

0 0 1

]
, � (7c)

	
ASh =

[
1 a 0
b 1 0
0 0 1

]
, � (7d)

	 A = AT × ASc × AR × ASh ,� (8)

these transformations have seven degrees of freedom ( sx, sy, θ , Tx, Ty, a, b). In network construction, we 
constrain the rotation angle θ ∈ (−π , π ) and apply L2 regularization to the other parameters to control the 
transformation magnitude. After compositing, the composite fields are rotated using the inverse of the average 
transform matrix, such that the composites of transformed fields have an orientation comparable to that of the 
raw fields.

Features extraction and classification
The vorticity and development equations suggest that the deepening rate is typically influenced by the spatial 
derivatives of input variables and their combinations, rather than the variables themselves. Therefore, we 
introduce a module to generate variables in this form. From a neural network perspective, this can be realized 
through multiple convolutional layers. However, convolutional layers inherently possess translational invariance 
and locality. This characteristic allows them to partially learn translation and rotation information directly from 
the input data, thereby weakening the corrective effect of the affine transformation. Our aim is to ensure that 
all coordinate transformation information is concentrated in the affine transformation matrix A for accurate 
correction.

Cyclone development is typically described by equations such as the potential vorticity tendency equation, the 
vorticity equation, and the development equation. Geopotential height, vertical motion, temperature advection, 
and vorticity advection play important roles in these equations. Fronts, key features of extratropical cyclones, 
whose strengths are closely related to potential temperature gradients, have a significantly influence on cyclone 
development. As described in Sect. 1, tropopause folding and upper-level potential vorticity intrusion are also 
important mechanisms for explosive cyclone development, facilitating the downward transport of high potential 
vorticity and momentum air from the upper levels, thereby strengthening low-level cyclonic circulation22,29–32. 
Therefore, potential vorticity strongly influences cyclone development. Topography also plays a role by affecting 
airflow lifting, blocking, convergence, and divergence77–79. Consequently, we select geopotential height, wind 
speed, vertical velocity, potential temperature, topography height and other relevant variables as model inputs.

Considering that these variables involve up to third-order horizontal spatial derivatives in the equations, 
we use three depthwise separable convolutional layers to approximate these derivatives. Depthwise separable 
convolution effectively extracts spatial features while reducing computation. Furthermore, to account for 
interactions between different variables—namely, product terms—and potential first-order vertical gradients 
present in the equations, we employ a GLU after the convolutional layers. The extracted features are denoted 
as Fm ∈ Rm× n× f , where m and n are the spatial dimensions, and f  is the number of extracted feature 
variables.

Ideally, Fm under the new coordinate system should present a relatively fixed distribution, which is highly 
correlated with the target variable (cyclone deepening rate). This implies aligning a dominant structural 
feature influencing the deepening rate to a similar spatial orientation. This fixed distribution is assumed to be 
represented by Hm ∈ Rc× m× n× f , where m, n and f  are as defined for Fm, and c denotes the number of 
categories. Point-to-point similarity (Eq. 10) calculates the probability p (k|x) of each sample belonging to each 
category, which serves as the network output (Eq. 11). The category with the highest probability is assigned as the 
sample’s cluster (Eq. 11). This point-to-point similarity measure constrains Fm and the corresponding Hm to 
have similar spatial distributions.
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	 Si = Similarity (Fm, Hm,i) , i ∈ {1, . . . , c} , � (9)

	
p (k|x) = exp(Sk)∑

c
i=1exp(Si)

, � (10)

	
cluster = argmax

i
p (i|x) , i ∈ {1, . . . , c} ,� (11)

the similarity function is measured using the Jensen-Shannon Divergence (JSD):

	 JSD (P | |Q) = 1
2

∑
(pi • log (mi)) + 1

2

∑
(qi • log (mi)) , M = (P + Q)/2, � (12)

	 Similarity (P, Q) = 1/JSD (softmax (P )| |softmax (Q)) . � (13)

Data and experiment settings
Data
For this study, hourly atmospheric variables were extracted from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) Reanalysis v5 (ERA-5)88. The extracted data, covering the period from 1979 to 
2023, has a spatial resolution of 0.5° × 0.5° and includes surface pressure, sea level pressure (SLP), 10-m wind, 
geopotential height, horizontal wind, vertical velocity, specific humidity, and temperature. Specifically, SLP is 
used to identify the extratropical cyclones for analysis.

And topography from ETOPO189 1 Arc-Minute Global Relief Model is used to show the topography under 
the cyclones.

MNIST75 dataset is used to test our CAN.

Experiment settings
Batch size, hardware and schedule  We trained our models on one machine with an RTX 3080 Ti GPU and the 
batch size is set as 128. For our models using the hyperparameters described throughout the paper, each training 
step took about 0.5 s on MNIST dataset or 1.0 s on cyclone dataset. We trained the models for a total of 75,000 
steps (750 epochs).

Optimizer  We used the AdamW optimizer90 with β 1 = 0.9, β 2 = 0.999, ε = 10−7 and w = 10−5. We 
varied the learning rate ( li

rate) over the course of training for each epoch ( epochi), according to the formula:

	
li
rate =




η max

(
epochi mod T
epochwarmup

)
, epochi mod T < epochwarmup,

η min + 0.5 (η max − η min)
(

1 + cos
(

π
epochi mod T −epochwarmup

T −epochwarmup

))
, epochi mod T ≥ epochwarmup.

This corresponds to increasing the learning rate linearly for the warm up training epochs, and decreasing 
it thereafter according to the cosine annealing91. We used η max = 10−4, η min = 0, T = 50and 
epochwarmup = 10.

Regularization  We employ two types of regularization during training:

Flooding  we employed flooding92 of value b = 1.1. This keeps the training loss to stay around a small con-
stant value, to avoid zero training loss. With flooding, the validation/test accuracy can be improved.

Label smoothing  During training, we employed label smoothing93 of value εls = 0.1. This hurts perplexity, as 
the model learns to be more unsure, but improves accuracy.

Data availability
The data used in this article can be accessed at the following URL:1. ERA-5 data: surface: ​h​t​t​p​s​:​​/​/​c​d​s​.​​c​l​i​m​a​t​​e​.​c​o​
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